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ABSTRACT

A low Mach number formulation of the three-dimensional Navier-Stokes

equations is solved for a steady laminar horseshoe vortex flow, using a

time-iterative approach. A split linearized block implicit algorithm isI
used, with central spatial differences in a transformed coordinate system.
The stability of this algorithm in three dimensions is examined for a scalar

convection model problem, and results are obtained which suggest that the

algorithm is both conditionally stable and rapidly convergent when

nonperiodic inflow/outflow boundary conditions are used. A new form of

artificial dissipation which acts along physical streamlines instead of

coordinate grid-lines is also tested and found to introduce less error when

the local flow direction is not aligned with the computational grid. An

accurate solution for a laminar horseshoe vortex flow is computed using an

improved solution algorithm with small artificial dissipation. This solution

does not change significantly when the mesh spacing is halved using

(15 x 15 x 15) and (29 x 29 x 29) grids. Very good convergence rates were

obtained, such that residuals were reduced by a factor of 10- in 30 and 60

iterations respectively, for 3,375 and 24,389 grid points.
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INTRODUCT ION

The horseshoe-vortex and associated corner flows which occur when a

blunt obstruction is placed within an approaching boundary layer represent a

fundamental three-dimensional viscous flow of considerable interest and

importance. Examples of this type of flow include the flows near an aircraft

wing/fuselage junction and near a submarine hull/sail junction. The feature

common to all horseshoe (or necklace) vortex flows is that a non-uniform

velocity is an approaching boundary layer meets a local region of adverse

pressure gradient due to the blockage effect of the obstruction. This causes

a three-dimensional boundary layer separation and the formation of one or

more horseshoe vortices around the obstruction. In addition to the leading

edge region, the associated corner flows downstream of the leading edge are

also of interest, since they contain streamwise vortices which affect the

0 performance of both the airfoil or strut and also other devices located

downstream.

The problem of horseshoe-vortex/corner flow has been investigated

previously [1-2] by numerical solution of the Navier-Stokes equations.

Solutions for laminar flow past an elliptical leading edge mounted normal to

a flat plate endwall have been computed for both zero and five-degree angles

of incidence, with chordal Reynolds number of 400, and Mach number of 0.2.

Turbulent flow cases have been computed for both unswept and 45-degree swept

elliptical Leading edges mounted on a flat plate, with Reynolds number of

310,000 and Mach number of 0.05. Results from these flow calculations have

been reported by Briley and McDonald [1-21. Calculations for a blunt-fin

induced shock wave and boundary-layer interaction flow containing a horseshoe

vortex have been reported by Hung and Kordulla [3]. Detailed experimental

measurements for incompressible turbulent horseshoe vortex flows have been

obtained recently by McMahon, Hubbartt and Kubendran [4] and by Moore and

Forlini [5].

A major impediment to the study of this and other three-dimensional

flows by solution of the Navier-Stokes equations has been the high cost

(computer run time) of computing accurate solutions. The high cost is

attributable to the large number of grid points inherent in three dimensions

and to a loss in convergence rate associated with the use of locally refined

1
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(nonuniform) grids which are necessary to define the multiple length scales 1 1
present in high Reynolds number viscous flows. Another difficulty is that

accuracy can be degraded by the use of artificial dissipation terms which are

added to central difference approximations for convective terms. Attempts to

reduce this source of error by using small amounts of dissipation have led to

instability in three dimensions using the present algorithm. The present

investigation was undertaken to acquire an improved understanding of the

stability and accuracy of the three-dimensional ADI scheme for a scalar

convection model problem, which would lead to improvements in accuracy and

efficiency of the solution algorithm for the Navier-Stokes equations.

In the present report, the methods used in solving the three-dimensional

Navier-Stokes equations for horseshoe vortex flows are first reviewed. The

questions of stability and error due to artificial dissipation are then

examined for scalar convection in three dimensions. Finally, solutions for a

laminar horseshoe vortex flow are computed using an improved algorithm with

reduced dissipation.

GOVERNING EQUATIONS

The three-dimensional compressible Navier-Stokes equations are solved

here for low Mach number and with an assumption of constant stagnation

enthalpy. For these conditions, steady flow solutions closely approximate an

incompressible constant density flow (cf. Briley, McDonald and

Shamroth [61). A zonal approach is used wherein the flow is computed only in

a subregion of the overall flow field, near the leading edge (Fig. 1). The

form of the governing equations solved permits the use of general

nonorthogonal body-fitted coordinate systems, and is obtained by a

transformation from Cartesian to general nonorthogonal coordinates. The

Cartesian velocity components ui and density p are retained as dependent

variables in the transformed system of equations. The pressure, temperature

and stagnation enthalpy are denoted p, T and ho, respectively.

All variables are nondimensional in the present formulation, having been

normalized by reference quantities denoted by a subscript 'r'. The

quantities Pr, Ur, Tr amd Lr denote reference values for density,

velocity, temperature and length, respectively. The reference pressure,

[.
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enthalpy and time are taken as PrU , cpTr and Lr/Ur, respectively,

where Cp is the specific heat at constant pressure. The specific heatI$
ratio is Y, and Mr = Ur/cr is a reference Mach number, where cr is2 ! R n i h a

the reference sound speed defined by cr = yRTr, and R is the gas

constant. The reference Reynolds number Re is defined by PrUrLr/Pr,

where Ur is a reference viscosity.

The transformation T from Cartesian coordinates xi to computational

coordinates yJ is given by

T y J(xi) ij = 1,2,3 (')

Spatial derivatives are transformed according to

j (2)

ayj

where unless otherwise stated the summation convention is used for repeated

indices, and yj. ayj/axi  The coordinate system is defined by specifying

the Cartesian coordinates of each computational grid point. The partial

* derivatives axi/ayi of the inverse transformation T = xi(yJ) are then

computed using three-point second-order difference formulas with uniform

spacing of the computational coordinates yi. For convenience, the yJ

coordinates are normalized to give a unit mesh spacing AyJ = 1 for each

coordinate. The transformation derivatives 3yJ/ax i are then computed

from axi/ayJ using standard procedures for computing deriva.ives of

inverse functions (cf. Kaplan [71).
The transformed Navier-Stokes equations can be written in the following

nondimensional form: The continuity equation is j
ap + y u a -o (3)+ Y3'i ayJ u

3
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The kth component of the momentum equation is given by

I

u+ + -
)  (4)

at + i (P 1k +ikP tik)

where Sik is the Kronecker delta function. The shear stress Tik is given

by

SRe-ui mauk 2 ut

T ik I Rei k u-i+Y,i 3- 6 ik ,m (5)
a ,aym y

The equation of state and definition of stagnation enthalpy can be expressed

for a perfect gas as

p - pT/yM 2  (6)r

ho T/(y-I)Mr + q2 /2 (7)
2 " "

where q = 6 uiuj. Although it is not necessary, it is both convenient

and computationally worthwhile for the present problem to assume that ho is

a constant and to omit solution of the energy equation. This results in

negligible error for steady flow at low Mach number with no heat addition.

Equations (6) and (7) can then be combined to produce an adiabatic equation

of state

2
p = P(h - q /2) (y-l)/y (8)

which is used to eliminate pressure as a dependent variable in Eq. (4).

4
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METHOD OF SOLUTION

The basic algorithm considered here has been described by Briley and S

McDonald [8, 9] and employs a formal time linearization to produce a

noniterative fully-coupled approximation for nonlinear systems of equations,

which is solved in block-implicit form using an ADI scheme with consistent

intermediate steps. For a linear scalar diffusion equation, this algorithm

reduces to a classical ADI scheme considered by Douglas and Gunn [101..-

Warming and Beam [11, 12] have introduced a very concise derivation of this

same algorithm using approximate factorization of the linearized

approximation written in 'delta' form. The works of Pulliam and Steger (131, 5

Thomas and Lombard [14] and Shamroth, McDonald and Briley [151 are

representative of numerous investigations which have employed this basic

algorithm.

Linearization and Time Differencing

The nonlinear system of governing equations is first written (at a

single grid point) in the following form: 5

H( )/3t= D( ) + S(4) (9)

where * is the column-vector of dependent variables, H and S are 5

column-vector algebraic functions of , and D is a column vector whose

elements are the spatial differential operators which generate all spatial

derivatives appearing in the governing equation associated with that element.

The solution procedure is based on the following two-level implicit

time-difference approximation of (9):

I+ n n-U n+1 nl + Sn) (0
(Hn +  - H)/At = B(D + S n ) + (1-6) (D (10)

where, for example, Hn + l denotes H( n+ l ) and At = tn + l - tn . The

parameter 6 (0.5 < 6 < ) permits a variable time-centering of the scheme,

with a truncation error of order (At 2 (6- 1/2 At).

5



A local time linearization (Taylor expansion about fn) of requisite

formal accuracy is introduced, and this serves to define a linear

differential operator L such that

Dn+l . Dn + L (,n+l _ n) + 0 (At2) (Ila)

Similarly,

H n+ - Hn + (,,/,,)n ( -+l _ ) + 0 (At2) Clb)

sn+1 - Sn + (S/W) (*n+l - 0n + 0 (At2  (lc)

Equations (lla-c) are inserted into Eq. (10) to obtain the following system

which is linear in On+l

n n+1. n)n
(A - OAt Ln) (0 _n) -At (D + Sn ) (12)

and which is termed a linearized block implicit (LBI) scheme. He.Le, A

denotes a square matrix defined by B

A = (aH/,) n - BAt (;SlOe)n  (13)

Equation (12) has 0 (At) accuracy unless H E *, in which case the accuracy is

the same as Eq. (10).

Special Treatment of Diffusive Terms

Spatial cross-derivatives are present in viscous terms and in added

artificial dissipation terms of the present formulation, and these cross

derivative terms are evaluated explicitly at tn . To preserve notational

simplicity, it is understood that all cross-derivative terms appearing in

Ln are neglected but are retained in Dn. In addition, although diffusion

coefficients in viscous and dissipation terms are generally functions of the

dependent variables, these coefficients are not linearized and instead are

evaluated implicitly at tn during each time step. Notationally, this is 5

equivalent to neglecting derivatives of these coefficients with respect to

6
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in Ln, which are formally present in the Taylor expansion (la), but

otherwise retaining all terms in both Ln and Dn.

It is important to note that neglecting terms in Ln has no effect on

steady solutions of Eq. (12), since 4n+l - *n = 0 and thus Eq. (12)

reduces to the steady form of the equations: Dn + Sn = 0. Aside from

stability considerations, the only effect of neglecting terms in Ln is to

introduce an O(At) truncation error.

Consistent Splitting of the LBI Scheme

To obtain an efficient algorithm, the linearized system (12) is split

using ADI techniques. To obtain the split scheme, the multidimensional

operator L is rewritten as the sum of three "one-dimensional" sub-operators

Li (i = 1, 2, 3) each of which contains all terms having derivatives with

respect to the i-th spatial coordinate. The split form of Eq. (12) can be

derived either by following the procedure described by Douglas and Gunn in

their generalization and unification of scalar ADI schemes, or using

approximate factorization. In either case, for the present system of

equations the split algorithm is given by I

(A - BAtL ) (,* - *n) = At (D, + Sn ) (14a)

(n ** $nt(* n)
(A - BAtLU ) )- = A - (14b)

(A - BAU) (0n+1 n A n) (14c)

where 0* and *** are consistent intermediate solutions. If spatial

derivatives appearing in Li and D are replaced by three-point difference

formulas, then each step in Eqs. (14a-c) can be solved by a block-tridiagonal

elimination.

Combining Eqs. (14a-c) gives

(A - 6AtLS) A -I (A - 6AtL ) A - (A - OAtL ) (3n+l- 4n)

= At (Dn + Sn)

7



which approximates the unsplit scheme (12) to 0 (A 2 Sicth

intermediate steps are also consistent approximations for Eq. (12), physical

boundary conditions can be used for 0* and O**. Finally, since the Li are

homogeneous operators, it follows from Eqs. (14a-c) that steady solutions

have the property that onl= n and satisfy

D n +5 S, 0 (16)

The steady solution thus depends only on the spatial difference approximation

used for (16), and does not depend on the solution algorithm itself.

STUDIES ON ACCURACY AND CONVERGENCE RATE

In practical high Reynolds number calculations using the split LBI

scheme (14a-c), artificial dissipation terms are added to the central spatial

difference approximations for convective terms to control numerical

* oscillations, stabilize the solution algorithm, and promote convergence.

Although the added dissipation terms introduce a first-order spatial

4 . truncation error in steady solutions, the magnitude of this error can be

* controlled using adjustable dissipation parameters and is at worst comparable

to that associated with two-point "upwind" differences. The increase in

accuracy derived from reduced values of added dissipation has been

4 demonstrated in two-dimensions by Shamroth, McDonald and Briley [15] in

computations of viscous transonic flow past cascades of airfoils.

Unfortunately, instability has been encountered in previous three-dimensional

flow calculations when only small amounts of dissipation are used. This is

not surprising since the Douglas-Gunn ADI (or delta-form approximate

factored) scheme applied to a simple scalar convection equation with periodic

boundary conditions is known to lose its unconditional stability in three

dimensions. This three-dimensional convective instability has been pointed

out by Warming and Beam [16], Dwoyer and Thames [17] and others. In the

present section, the behavior of the ADI scheme (14a-c) applied to scalar

convection in three dimensions is considered further, and a new form for the

artificial dissipation terms is examined.



Stability Considerations

As a model problem, the following three-dimensional scalar convection 0

equation

+ + (17)

(constant u) is approximated on a unit cube with an equally spaced grid such

that

x JAx Yk = ky z LAz j,kj = 0,1,...N (18)

nand with Ax = Ay Az = h = The notation denotes

TheX

O(xj, Yk, z£, tn), and one or more of these indices will often be

omitted for simplicity. Equation (17) is approximated by the following ADI

scheme analogous to (14a-c):

nS
(1 - At D) AO At (Dx + Dy + D) n (19a)

(I - SAt D ) AO = AO (19b)
y

(1 - $At D) AO = AO (19c)

where AO = On+l - *n and At = tn+ l - tn. Central spatial differences

are used, so that the spatial difference operators appearing in (19a-c) are

given by

D = (u/2h) (0j+1 - Ojl (20)

with analogous expressions for D and Dz.

yS
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To examine the stability of (19a-c) using the von Neumann method, a

discrete Fourier-component solution of the form

i(w xj + W 2Yk + W3 z )
¢j~,(w) = n(w) e (21)

is substituted into (19a-c) after eliminating the intermediate solutions A&*

and AO**, and the amplification factor t (At, W) = on+l/on is determined.

2Here, w denotes the vector of frequencies (wI, w2, W3 ), and i = -1. The

algorithm is stable for a given time step if for all frequencies w present.

maIx
-aX (22)

To cover all possible frequencies, the algorithm must be stable for arbitrary

w in the range

- f/h < wlW 2,W3 < 1/h (23)

and for these conditions, it has been found that the algorithm (19) is

unconditionally unstable. However, this particular stability analysis

applies rigorously only for an infinite domain with periodic initial

conditions, and does not account for the influence of nonperiodic boundary

conditions on a finite domain.

In the present investigation, the computation of steady solutions of the

Navier-Scokes equations is of primary interest, and this invariably leads to

the specification of nonperiodic boundary conditions in one or more

directions. In addressing steady solutions of the scalar convection

equation (17), it is natural to specify function values at inflow boundaries

and to employ some form of extrapolation or one-sided differencing at outflow

4 boundaries. Accordingly, the behavior of the algorithm is investigated for

u > 0 and with the (implicit) boundary conditions

0

10
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n+1 at y 0

zO0 (24a)

6 2n+1- 0 at x- 1
X

(24b)

6$ -0 at yi 1
Y (24c)

6 2.n+l - at z (24d)

where *b denotes prescribed boundary values and where

x - 2J + J-1 (25)

with analogous definitions for 62 and 62. The extrapolation outflow
y z

condition is equivalent to replacing the central difference formula for the

direction normal to the outflow boundary by two-point, one-sided,

differences at points adjacent to the outflow boundary.

The stability of the algorithm (19) subject to the implicit boundary

conditions (24) was tested in numerical experiments using B = 1.0 and

different choices of At, h, and initial conditions. By chosing Ob = 0 on

the inflow boundaries, the exact solution of the steady difference equations

is ,0 and consequently, the value of ok also represents the error
nj,k,a

e n from the steady solution. The stability and degree of convergence wasj ,k,tE
assessed by observing the behavior of en with increasing n. The L2 norm of

the error at interior grid points

N-I2
e(en 1k~ (26)

II en II = (26)4 j ,k,L=l

[p

I"
11
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was monitored as an indicator of both stability and rate of convergence to

the steady solution.

In each of the cases tested, the algorithm (19) with boundary conditions

(24) and with 8 = 1.0 was found to be stable for sufficiently small Courant

number C = uAt/h, in contrast to the unconditional instability indicated by

the Fourier analysis with frequencies given by (23). For example, Fig. 2

shows the computed error behavior for 50 steps using C = 0.8 and the

(discontinuous) initial condition

- G(x) G(y) G(z) (27a)

/2a for 0 < a < 0.5

G(a) (27b)

1-2a for 0.5 < a < 1

The results in Fig. 2 indicate a stable calculation with good error reduction

for both N 1 10 and N = 50. In another example, the amplification factor for

C = 1.02 and N = 10 has a theoretical value of 1.00484 (unstable) for the

frequency w = (-w, -2w, 51). Using C = 1.02, N = 10 and the initial

condition

= G(-rx) G(-2y) G(5z) (27c)

G(a) = sin(a) + cos(a) (27d)

which contains only this single frequency and does not satisfy the boundary

conditions, the L2 error was reduced to less than 10-  its initial value in

100 iterations. Had the theoreteical amplification factor of 1.00484 been

accurate for these boundary conditions, this error would have increased by

62% in 100 iterations. The discrepancy between the instability predicted by

: the (periodic) Fourier analysis and the empirically observed stability is

*0attributed to the non-periodic boundary conditions (24). Since these

boundary conditions are treated implicitly, they influence the solution

simultaneously at all grid points during each time step.

A heuristic treatment of non-periodic boundary conditions within the

von Neuman approach can be accomplished by taking the region

(0 < x, y, z < 1) to be a half interval for each coordinate, with periodic

extension of the (nonperiodic) solution into the full interval

(-I < x, y, z, < 1). At interior grid points (1 < j, k, X < N-i), the error

ej,k,. from the steady solution can be expressed as a finite Fourier series

12



containing only sine terms (odd extension), with frequencies given by

= m m =1,2,...N-i (28a)

"2 m21 m 2 W 1,2,...N-1 (28b)

W3  m3 w m3 - 1,2,...N-i (28c)

This representation correctly satisfies the condition of zero error at inflow

boundaries, but incorrectly assumes zero error at outflow boundaries. The

amplification factor C(At, W) for the restricted range of frequencies (28) S

provides a useful estimate of the observed stability, although it is

heuristic in its approach to the non-periodic boundary conditions. A

numerical computation for the frequency range (28) with N = 10 indicates that

the maximum H numbers for which wl = w2 = w3 w , and therefore it is

sufficient to consider the behavior of C(At, W) for

0 < wh < w (29)

For 8 ], this leads to the following stability condition (See Appendix A)

C - uAt/h < 3/72 (30)

The stability of the algorithm (19) with boundary conditions (24) was

tested in numerical experiments for N = 10 with initial conditions given by

N-i

_ sin(jTrx) sin(kry) sin(Eirz) (31)

j,k,X=1

which includes contributions of unit amplitude from all frequencies in (28).

The quantity

II en+' 1 1 /11 enll (32)

13
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is taken as an empirical measure of the maximum amplification factor 'Ffor

the purpose of assessing stability. Computed values of *F after 30 iterations

are shown in Fig. 3, along with theoretical curves for both the full range of

frequencies (23) and for positive frequencies in the range

0 <wi W 2 * W3 < r/h (33)

which led to the estimate (30) for stability. The theoretical curves were

obtained numerically using a sampling increment of W/l0h for each frequency.

For the conditions of these test calculations, the stability condition (30)

provides a useful and somewhat conservative estimate of the observed limit of

stability. Although the present results provide only a limited model for the

Navier-Stokes equations, the stability and rapid convergence rates obtained

here with proper time step selection are very encouraging. It is later

demonstrated here that rapid convergence can also be obtained for the

three-dimensional Navier-Stokes equations with small values of artificial

dissipation.

Second-Order Artificial Dissipation

One method of adding dissipation is equivalent to a replacement of the

convective derivative operator for each coordinate direction by a modified

operator, as follows:

ax ax 2 2

with analogous replacements for v3( )/3y and wa( )/3z. When three-point

central differences are used on a uniform grid, the resulting approximation

is equivalent to the two-point upwind difference scheme when a = 1. This

latter scheme has first-order accuracy and is especially inaccurate when the

velocity is not aligned with the computational grid. Alternatives to this

upwind scheme have received considerable attention (see, for example,

Raithby [18], Baliga and Patankar [191, and Brooks and Hughes [20]). A very

simple but effective method of improving the accuracy of the upwind scheme is

to express the scheme in terms of central differences and an added

dissipation as in (34) and then reduce the dissipation parameter a. For

sufficiently small values of a, this method obviously approaches the accuracy

14



of the second-order central difference scheme. Dissipation of the form given

in (34) will be referred to here as 'upwind' dissipation.

When the velocity is not aligned with the coordinate mesh, the accuracy

for a given value of a can be improved by adopting a different form for the

dissipation terms, which acts to smooth convected quantities only in the

direction along streamlines. This form of dissiaption is used in the
streamline-upwind method of Brooks and Hughes [20] and is also present in the

tensor viscosity method of Dukowicz and Ramshaw [151. Dissipation of this

type will be referred to here as 'streamwise' dissipation, and can be

illustrated as follows:

If s denotes distance along a streamline, and if s is the unit vector in

the direction of the streamline, then the velocity vector U can be expressed

as U f qs where q f U • U, and the convective operator can be expressed as

U- V q as (35)

where

as s - V (36)

Streamwise dissipation can be added by replacing the convective operator by a

modified operator analogous to (34) as follows:

a _As 3U -V - q -- a 2 (37)
2as2

where

(qAs)2 = (u Ax)2 + (v Ay)2 + (w Az)2  (38)

In three dimensions and for constant velocity, the streamwise dissipation
0 term has the form

0
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- 2 3 2 2 32 2 a 32 22'---IU + v + w - +uv-+ 2u-- + 2v-- (39)
2q 2 y2 z2  ax3y axz 3Yz]

The above form is equivalent to upwind dissipation only in one dimension

(u *0, v = w =0) or if the mixed-derivative terms are omitted. In the

numerical algorithm, the mixed derivative terms are evaluated explicitly.

Warming and Beam [221 have shown for a three-dimensional scalar diffusion .]

equation that the explicit treatment of mixed-derivative terms does not upset

the unconditional stability of the ADI scheme (19) with 8 = 1.

The effect of upwind and streamwise dissipation on accuracy was examined

for a three-dimensional test problem suggested by Abarbanel, Dwoyer and

Gottlieb [23]. Here, the convection equation (17) is solved in the unit cube

with equal mesh increments and for N = 10. An exact steady solution 0 of

equation (17) for these conditions is given by

0 - COs [2n(x-y)] + cos [2(y-z)) + cos [2w(x-z)] (40)

In this test problem, the velocity vector is directed diagonally to each

incremental mesh cube. In the present calculations, the correct boundary

conditions for * were prescribed from this known exact solution ( 0 0 at
20 =2

inflow; 6 = 620 at outflow). It was noted that the central difference

scheme without dissipation (a = 0) reproduced the exact solution 0 at

all grid points. Consequently, the error 0 - in the present calculations I
is entirely due to the added dissipation. The maximum error

t0 - DI/(0max - Omin ) at interior points is shown in Fig. 4 as a function

of the dissipation parameter a for both the upwind (34) and streamwise (39) ,

forms of dissipation. Although the coarse mesh used (N = 10) causes

relatively large errors at large values of a, the streamwise dissipation (39)
provides a considerable improvement in accuracy for a given value of 0.

Other solutions were computed in which resolution was improved by using the

same coarse grid (N = 10) but for computational domains smaller than the unit

cube. These results confirm that the increased accuracy of streamwise

dissipation over upwind dissipation for fixed a is maintained when the grid

resolution is increased.
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COMPUTED RESULTS FOR A LAMINAR HORSESHOE VORTEX FLOW

Flow Conditions

Solutions are presented here for laminar flow at zero incidence past an

elliptical leading edge geometry mounted between parallel flat plate

endwalls. The purpose of these calculations was to determine whether the

improved understanding of stability and accuracy acquired in the present

model problem studies could be exploited to allow computation of accurate

solutions of the three-dimensional Navier-Stokes equations using the split

LBI scheme with small amounts of artificial dissipation. The leading-edge

geometry for the present calculations is the same as that considered by

McMahon, Hubbartt and Kubendran [41 for turbulent flow conditions. A laminar

flow case was chosen here to allow an accurate assessment of the numerical

method, which is not clouded by extraneous factors associated with turbulence

modelling. The computation of turbulent flow cases will be undertaken in a

future investigation.

The flow geometry (Fig. 1) consists of a strut of constant thickness W

having an elliptical leading edge with 1.5:1 ratio of major to minor axis.

The strut is mounted normal to parallel flat plate endwalls whose separation

distance is 5.0W, and whose leading edges are located a distance 6.0W

upstream of the leading edge of the strut. The length L of the strut within

the computational domain is 2.5W. The flow considered has a Reynolds number

Re = 200 (based on L) and Mach number Mr 0.1, each based on upstream flow

conditions.

Boundary Conditions

Since the computational domain is chosen to be a region in the immediate

vicinity of the leading-edge/corner flow geometry (cf. Fig. 1) embedded

within a larger overall flow system, inflow and outflow boundary conditions

which adequately model the interface between the computed flow and the

remainder of the flow system are required. The inflow/outflow conditions

used are derived from an assumed flow structure and are chosen to provide

inflow with prescribed stagnation pressure (and stagnation enthalpy) in an

inviscid core region and with a given axial velocity profile shape in the
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endwall boundary layer, and to provide outflow with a prescribed distribution

of static pressure in the cross section. This approach to inflow/outflow

boundary conditions has been discussed previously in [1-2] and is only

summarized here.

First, the boundary layer thickness 6 (xi) on the endwall flat plate is

approximated by its distribution from the Blasius flat plate solution. At

the inflow boundary, a "two-layer" boundary condition is employed such that

stagnation pressure Po is fixed at the free stream reference value in the

3core flow region (y > 6) and an axial velocity profile shape

f3 3ul/ue = fy3/6) is fixed within the boundary layer region (y < 6). Here,

ue is the local edge velocity which varies with time and is adjusted after

each time step to the value consistent with po and the local edge static

pressure, which is determined as part of the solution. The remaining inflow

conditions are u2 = 3 u3/3n = 2p/an 0, where n denotes the normal

computational coordinate, y . For outflow conditions, a constant static

pressure is imposed, and second derivatives of each velocity component are

set to zero. At no-slip surfaces, each velocity component u i is set to

zero, and the remaining condition applied to these surfaces is that the

derivative of pressure in the direction normal to the surface is zero. This

L adition approximates che normal momentum equation to order Re- I for viscous

flow at a no-slip surface. The final boundary to be considered is the plane

parallel to the endwall and in the free stream. This boundary is assumed to

be a plane of symmetry, so that the flow represented is that past the strut

mounted between parallel flat plates.

Computational Details

For constant stagnation enthalpy, the governing equations consist of

continuity (3) and three components of momentum (4). After eliminating

pressure using (8), these equations are solved using the split LBI

0 scheme (14), linearized with respect to the dependent variables

OT = (p, U1, u2, u3). Central spatial differences are used on an equally

spaced grid for each transformed coordinate yi, and streamwise dissipation

terms analogous to (39) are added to these equations.

0 For each governing equation, the streamwise dissipation term can be

expressed as
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.KQ j k (41)
2 ayj ayk

where sJ = UJ/Q are components of a unit vector, and where

U1  Y u (42a)

Q2 jk  (42b)

Here, a is a dissipation parameter, * is a scalar representing the
appropriate dependent variable (p for continuity and uk for the kth
momentum equation), and k is 0 for continuity but otherwise 1.

The quantity V defined by

V = (fjsk) j k  (43)

where

Re- 2

f1  R E (y 2 (44)

is a measure of the physical diffusion in the streamwise direction. The

artificial dissipation term (41) is omitted at points for which V is greater

than opkQ/2. In the present calculations, the value a = 0.1 was used for

the dissipation parameter. It should be recalled that for scalar convection

in one dimension, the value a = 1.0 is equivalent to two-point upwind

differencing, and thus the value a = 0.1 is relatively small.

Although a uniform grid was used for the transformed coordinates yJ,

the grid used is highly nonuniform in physical coordinates xi, as shown in

Fig. 1, and was chosen to provide resolution of several length scales known

to be present for this type of flow. Care was taken to provide resolution of

the boundary layers on the strut and endwall surfaces, of the shear layer

near the leading-edge stagnation line, and of the corner flow region very

near the endwall/leading-edge intersection. Two computational grids,
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consisting of 15 and 29 equally spaced points for each transformed coordinate

direction, were used to compute solutions which were otherwise identical.

For the finer grid, the mesh spacings adjacent to the endwall and strut

surfaces were 0.0005W and 0.0085W, respectively.

A pseudo-time dependent iteration procedure was employed in which the

square matrix A in the LBI scheme (14) is replaced by a modified matrix

A + AB, where B is a diagonal conditioning matrix. This technique was

* employed by Briley, McDonald and Shamroth [61 to improve the convergence rate

* of this algorithm when applied to low Mach number flows. In the present

calculations, a diagonal matrix B whose diagonal elements are

CI/YMr 2, 1, 1, 1) was used. In addition, a spatially varying time step was

used to avoid instability analogous to that encountered for the

three-dimensional scalar convection equation, and to improve the convergence

rate. Several procedures for time step selection for the Navier-Stokes

equations are presently under investigation, and the present results should

* be taken any as a demonstration that this technique can provide a good rate

of convergence to the steady solution. A more detailed account of variuos

* techniques for time step selection will be given in a forthcoming paper.

Computed Results

Before proceeding to a discussion of the horseshoe vortex flow, an

indication is given of the degree and rate of convergence obtained for these

three-dimensional calculations, and of the effect of halving the mesh on the

computed solutions. The convergence rate for each of the two grids is shown

in Fig. 5, where the maximum residual in the field is normalized by its value

* at the start of the calculation. A very good rate of convergence was

obtained for a relatively small value of dissipation parameter (a = 0.1).
2Reducing the normalized residuals to 10- gave convergence to within a

tolerance not distinguishable in the plots of computed flow variables given

here, and this required about 30 to 60 iterations, respectively, for the

* (15 x 15 x 15) and (29 x 29 x29) grids.

The effect of halving the mesh spacing on the computed distributions ofI
flow variables at a representative location is shown in Fig. 6. The

distributions of each velocity component and static pressure coefficient

=P 
2(p - /yMr') in the x3 direction are given for a line normal to the
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endwall and within the plane of symmetry upstream of the strut leading edge,

located a distance 0.22W upstream of the leading edge. This location has the

peak value of reversed flow in the ul velocity component. The comparison in

Fig. 6 is representative of that found throughout the flow field. The

solution does not change significantly when the mesh is halved, and this is

an indication that the solutions are accurate and that the flow behavior is

adequately resolved using these grids. The sensitivity of the coarse mesh

solution to the location of the outflow boundary was also tested by adding

grid points to move the outflow boundary downstream a distance 6.IW, and this

had no significant affect on the solution.

Computed results for the (29 x 29 x 29) grid are shown in a series of 0

plots in Figs. 7, 8 and 9a-f. In Fig. 7, velocity vector plots in the plane

of grid points adjacent to the no-slip endwall surface are contrasted with

corresponding results from the symmetry plane midway between the endwalls.

The vector magnitudes are renormalized for each plot and thus indicate only

flow direction and relative magnitude within the plot. A reversed flow

region within the horseshoe vortex is clearly visible near the endwall. The

reversed flow region includes two saddle-point flow separations associated

with the horseshoe vortex flow structure. One of the saddle points is very

close to the leading edge and is not clearly visible in Fig. 7.

The computed flow behavior in the corner region near the intersection of

the strut and endwall is shown in Figs. 8-9. The flow is shown in planes

normal to the strut surface and intersecting the endwall, as indicated in

Fig. 8. Vector plots of velocity within these planes and contour plots of

normal velocity, static pressure coefficient C and total pressure

coefficient CPO are shown in Figs. 9a-f. The cross sections have a width

of 2W and height of 1.25W. The horseshoe vortex formation in the stagnation

symmetry plane (plane 1) can be seen in Fig. 9a. There is a strong downward

velocity toward the endwall in the region near the leading edge (behind the

saddle-point separation), with maximum downward velocity about 45 per cent of

the free stream reference velocity. The maximum reversed flow velocity (ul) •

is about 7 per cent of the reference velocity (see also Fig. 6). The

horseshoe vortex continues its development at downstream locations and moves

outward away from the corner region and into the free stream. The contours

of velocity normal to the cross sectional planes give an indication of the S

shear layer development on the struit and endwall surfaces and also show the

21



distortion of the shear layers in the corner region due to the horseshoe

vortex. The static pressure field is highly three-dimensional, with

significant spanwise gradients along the strut surface and low pressure near

the strut/endwall intersection. Although no oLher analytical results or

experimental measurements of the three-dimensional horseshoe vortex flow are

available for comparison, the present computed results are consistent with

flow visualization studies of related leading edge vortex flows.

CONCLUDING REMARKS

Significant progress has been made in improving the

accuracy/convergence-rate properties of the present numerical method for the

three-dimensional Navier-Stokes equations. It has been demonstrated for the

laminar flow considered that an accurate (grid insensitive) steady solution

* can be computed and that good convergence rates can be obtained in three

dimensions, using only small amounts of artificial dissipation. These

calcultions were performed using locally-refined nonuniform grids of the type

needed to define the multiple length scales present in high Reynolds number

viscous flows. A future study will address the computation of turbulent flow

cases with resolution of the viscous sublayer region. Based on our recent

experience with a vectorized version of this code on a CRAY-I computer, it

should soon be possible to compute solutions fGr a 30 x 30 x 30 grid (27,000

points) in about 10 minutes of run time.
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APPENDIX A

Under the condition that the frequencies for each coordinate direction

are equal (i =W2 = W3 = W), the amplification factor for the algorithm given

in (19a-c) can be written in the form

a 1 + i
+ (A.1)

a2 + 2

where

a1 = a 2 = 1- 3 (CA)2  (A.2a)

12 = - 3CA + (CA)3  (A.2b)

= 82 + 3CA/0 (A.2c)

I
and where

C = uAt/h (A.3)

i A =sin(wh) (A.4)

Because al a2, neutral stability occurs when 81 = 62, which yields

CA = [3(28-1)/26]1/2 (A.5)

The maximum value of A occurs for wh = 7r/2, and this gives the following

stability condition:
I ,

c < 63-1 [3(2613_)/281 1/2 (A.6)

The special case 0 = 1 gives C < /-3/2.
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